Satisfaction : en finir avec la malédiction

15602367155_e20626947f_zAucun autre texte que celui des Rolling Stones n’exprime mieux le problème de la satisfaction : son incapacité à produire un état de bien-être durable. Il dit l’essentiel d’une société de consommation où la sollicitation crée la frustration et l’amélioration des conditions matérielles ne change pas la ligne du bonheur.

De nombreuses firmes désormais incluent la mesure de la satisfaction, ou d’autres indicateurs comme le NPS, parmi les KPI pour mieux piloter l’entreprise, en en faisant un instrument de mesure externe (compétition) et interne (benchmarking), mais aussi longitudinal (apprentissage).   Mais elles se heurtent à un fait : il s’avère que dans le temps, les indices de satisfaction varient peu, les données de l’Asci en rendent compte : les satisfaction indicevariations intersectorielles sont plus importantes que les variations temporelles. Ainsi dans le graphe suivant, où nous avons pris soin de prendre en compte toute l’étendue de l’échelle de l’ACSI, que l’on pense bien faite, et à partir de leurs données, on s’aperçoit de la stationnarité de l’index, et plus remarquable encore de celle d’un secteur, la TV où sur la période des amélioration notables ont été apportés au produit : réduction de l’épaisseur des écrans, accroissement de leur luminosité, multiplication des fonctions et services associés et naturellement digitalisation. Les efforts des industriels ont-ils été vains?

Il peut être intéressant d’examiner la dynamique de la satisfaction en revenant à son modèle le plus simple pour s’interroger sur une hypothèse remarquable, celle de la malédiction de la satisfaction. Celle-ci peut s’exprimer de la manière suivante : si les efforts réalisé par les entreprises pour améliorer la qualité peuvent conduire dans l’immédiat à une augmentation de la satisfaction, sur le long terme cet accroissement de la qualité peut engendrer une élévation du niveau des attentes, réduisant ainsi les gains de satisfaction. Le jeu concurrentiel entretient ce processus et conduirait ainsi à l’observation d’une stabilité des indices satisfaction.

En réalité peu d’articles se sont penchés sur la question théoriquement et empiriquement (on trouvera leur références en fin d’articles)  même si certains champs de la la psychologie, peuvent nous permettre de mieux justifier cette hypothèse, nous y reviendrons un peu plus loin. Ce vide relatif a longtemps été le résultats de ceux que les mesures longitudinales ne sont pas si faciles à obtenir, mais aujourd’hui on dispose de telles bases et il y a certainement matière pour renouveler la recherche dans le champs. Ceci dit le travail empirique n’est pas le seul chemin  pour saisir cette dynamique. La simulation peut être un excellent moyen de la comprendre. En voici une esquisse.

Revenons au modèle de la satisfaction. L’élément principal réside dans la notion de confirmation : si les attentes (At) sont supérieures à la qualité perçue (Qt), un effet négatif de cette différence joue sur la satisfaction (St). Peut s’y ajouter une certaine inertie de la satisfaction, et des éléments aléatoires (humeurs, situation, mesure…). Cela se modélise aisément par

S(t)=αA(t)-Q(t)) +βS(t-1)+ε(t)

Les attentes sont certainement déterminées par leur état antérieur (inertie) et le niveau de satisfaction éprouvé précédemment (plus on est satisfait et plus les attentes sont augmentées) :

At=φA(t-1) + δS(t-1) +μ(t)

De même la qualité perçue dépend du jugement précédent de qualité (inertie), de l’état de satisfaction précédent et de la politique de qualité de l’entreprise qu’on représente par Kt..

Q(t) =θQ(t-1)+γS(t-1) + K(t) +ν(t)

En itérant les équations dans le temps, et en répétant ces itérations un grands nombre de fois on peut étudier par une méthode de Monte-Carlo le comportement de ce systèmes et surtout des perturbations qui peuvent lui être apportés. C’est ce que nous avons fait. Mon ami et collègue Amine Benabi a donc mis celui en musique sous r (cette version est encore sommaire, le modèle n’a pas été calibré. Elle est consultable sur demande) . En voici le résultat d’une première formalisation où nous suivons la dynamique sur 300 périodes, le processus ayant été répété 1000 fois. Chaque courbe représente la moyenne des 1000 simulations.

satisfaction

Dans l’initiation du processus, on a pris volontairement une valeur très élevée des attentes au regard de la qualité perçue, on s’aperçoit que très rapidement un réajustement s’opère : les niveaux de satisfaction et de qualité perçue se confondant, ce qui va d’ailleurs dans le sens de cette vieille argumentation à l’égard de la satisfaction dans les services qui considèrent qu’on peut difficilement les distinguer et justifie le modèle Servqual.

A l’itération 100, nous avons « choquer » le modèle en introduisant une réduction brutale des attentes. Un tel phénomène est ce que free a produit en se lançant dans le marché du mobile avec une offre a petit prix, produisant chez les consommateurs une modification sensible de leur niveau d’attente en terme de qualité de service, dans les mois qui ont suivi d’ailleurs la marque s’est retrouvée avec un niveau de satisfaction plus élevé que ses concurrents, et c’est bien ce que l’on retrouve : un rebond de la qualité/satisfaction perçue.

Mais à long-terme on s’aperçoit que le niveau de disconfirmation retrouve son niveau et fluctue très faiblement. Les oscillations des autres indicateurs par la suite traduisent une marche au hasard, qui résultent des éléments aléatoires introduit dans le modèle.

On peut regarder de plus près ce qui se passe au moment de la perturbation en examinant la distribution de l’indicateur de satisfaction au travers des 1000 essais. On s’aperçoit que le changement du niveau d’attente produit une élévation du niveau de satisfaction, mais aussi un accroissement de sa variabilité! Avec le temps l’adaptation joue non seulement dans le sens d’une réduction de la satisfaction, mais aussi avec une réduction de la variance de la satisfaction.

boxplot satisfaction

Il faudrait naturellement systématiser l’analyse, en formulant d’abord un modèle réaliste, au moins dans ses paramètres ( dont on retrouvera aisément des valeurs plausible dans la littérature et en multipliant les expériences de  » choc »), mais aussi dans la définition des variables ( par exemple on ne tient pas compte des aspects normatifs de l’attente : elle dépend aussi des attentes des autres!) . Mais cette illustration suffit à confirmer que l’analyse de la dynamique rend compte d’une certaine stationnarité de la satisfaction. Ceci a des conséquences en terme de barométrie :

  • c’est sur les impacts à court terme qu’il faut centrer l’attention. Les variations de satisfaction ont de sens que consécutives à une action donnée. Il faut se concentrer sur l’impact des événements plus que sur la trajectoire générale.
  • La satisfaction doit être comparée à des référents. Se dégrade-t-elle par une élévation trop rapide des attentes ou par une amélioration insuffisante du sentiment de qualité ?
  • Ce mécanisme jouant à l’échelle du secteur, ce sont les différences relatives entre les concurrents qui sont les plus significatives. Encore faut-il savoir si de l’un à l’autre le paramètrage est identique! Certaines marques peuvent ainsi connaitre des niveaux d’inertie plus forte que les autres.

Plus profondément cela mène à réfléchir aux conditions d’une stratégie centrée sur la satisfaction. L’amélioration continue, stimulée par l’innovation concurrentielle risque de buter sur des attentes croissantes. La seule issue est une disruption : si en repensant l’offre, le modèle d’attente change qualitativement. C’est ce qui se passe ici  où l’on représente les conséquences d’une baisse brutale du niveau d’attente (car il prend une nouvelle forme qualitative). Dans les périodes suivantes la satisfaction se remet à croître jusqu’à ce que la « malédiction » reprenne le dessus. Le modèle de gestion de la satisfaction pourrait ainsi ne pas être simplement progressif, il demanderait des ruptures régulières passant sans doute par des changements de convention d’attentes et de qualité.

Reste sur le plan théorique à mieux comprendre les ressorts psychologiques de ces phénomènes d’adapation. Et sur ce plan on est pas démuni comme la contribution de Martin-Krumm, Lyubomirsky et Nelson le démontre. Le modèle de l’Adaptation Hédonique aux Evenements positifs et négatifs (HAPNE) du courant de la psychologie positive, peut nous amener à mieux comprendre les processus à l’oeuvre, et à répondre à cette question de méthode que Christian Barbaray m’a posé il y a quelques semaines : comment relier des mesures de satisfaction à chaud, associée à des événements particulier, à la mesure baromètre, à froid, de ce qu’on appele ordinairement satisfaction cumulée.

Je ne résiste pas à reproduire ici un des schémas du chapitre pré-cité ( il y en a un autre pour le domaine négatif, voir le texte ) :

HAPNE positif

On y retrouvera l’hypothèse que nous avons testée par simulation et quelques autres pistes d’actions : l’augmentation des émotions positives qui correspond à certaines pratiques de l’expérience client,  la production d’événement surprenants et variés (et voilà qui donne une bonne explication à l’activité incessante et créative d’une marque comme coca-cola), ou aux tactiques visant à mettre en valeur les changement.

Et l’on sera tenté de se dire que finalement le maintien et l’accroissement de la satisfaction n’est pas tant que question de répondre aux attentes, mais comme les vieilles star du rock savent le faire, de mettre en scène continuellement les variations d’un même motif, et que plutôt qu’une innovation en profondeur, ce dont les marques ont besoin n’est peut-être simplement que d’inventer de nouvelles soupes dans de vieux pots.

Quelques références

  • Martin-Krumm, Lyubomirsky et Nelson (2012) « Psychologie positive et adaptation : quelle contribution? » in Psychologie de l’adaptation – direction de : Cyril Tarquinio, Elisabeth Spitz, De Boeck Supérieur
  • Homburg, C., Koschate, N. & Hoyer, W.D., 2006. The Role of Cognition and Affect in the Formation of Customer Satisfaction: A Dynamic Perspective. Journal of Marketing, 70(3), p.21–31.
  • Bruhn, M. & Frommeyer, A., 2004. Development of Relationship Marketing Constructs Over Time Antecedents and Consquences of Customer Satisfaction in a Business-to-Business Environment. Journal of Relationship Marketing, 3(4), p.61.
  • LaBarbera, Priscilla A., and David Mazursky.1983. « A Longitudinal Assessment of Consumer Satisfaction/Dissatisfaction: The Dynamic Aspect of the Cognitive Process. » Journal Of Marketing Research (JMR) 20, no. 4: 393-404.

Une réflexion sur “Satisfaction : en finir avec la malédiction

Les commentaires sont fermés.