Master Management de l’Innovation GDO/MOPP – Méthodes quantitatives pour la recherche en gestion

L’objectif du cours est de donner une culture quantitative élargie aux étudiants, leur laissant le soin d’approfondir les méthodes qui pourraient être utilisées dans le cadre de leurs projets de recherche. Il est aussi de le donner le sens critique nécessaire pour évaluer les protocoles employés dans la littérature courante de gestion. Il est dispensés aux étudiants du Master management de l’Innovation parcours MOPP et GDO.
Le cours s’organisent en 2 éléments :

1) Rappels élémentaires de statistique et d’analyse multivariée (tests, régression, ACP et classification) : 3 séances . L’environnement le langage r avec le package Rcmdr et  rstudio qui sont à installer au préalable. On trouvera un manuel d’initiation ici  et pour la culture générale on encourage à suivre r-blogger.

On travaillera sur un cas issu du Mémoire de Master Marketing de Pauline Vautrot. Il porte sur l’effet des preuves de transparence sur l’évaluation d’un moteur de recommandation. Les éléments se trouve sur le dossier google drive.

  1. Analyse univariée avec r
  2. Analyse bivariées : Test du khi², analyse de variance, corrélations, …
  3. Analyse factorielle
  4. Classification automatique
  5. Régressions

2) Un atelier des méthodes – présentation de protocoles méthodologiques dont les synthèses sont présentées par les étudiants sur la base d’articles significatifs dont voici un florilège. ( en Janvier 1 journée pleine)

Evaluation : au choix : une étude statistique menée avec r, ou l’exposé synthétique d’une méthode (en 4 pages). C’est un travail individuel. Inscription ici

Quelques idées de sujet :

  • Analyse conjointe et modèle de choix ()
  • Modèle de croissance ( SEM)
  • Méthode de la différence des différences (causalité)
  • Modèle de régression avec variable instrumentale ( causalité)
  • Modèles VAR ( économétrie, causalité) : avec une belle application pour l’analyse des effets croisés des médias sur les ventes.
  • Modèle linéaire hiérarchique et analyse multi-niveaux ( économétrie)
  • Mesure des attitudes implicites (Échelle), en se concentrant sur les travaux du Project Implicit
  • Machine learning et catégorisation de document en explorant les solutions proposées par MonkeyLearn pour la catégorisation.
  • Analyse des rendements anormaux (finance) ou event Analysis. Une application à l’effet des surprises ( positives ou négatives) est un très bon point de départ.
  • Régression avec auto-corrélation spatiale ( économétrie). Pour une introduction cette application en marketing en donne une très bonne idée.
  • Modélisation multi-agent appliquée au sciences sociales en passant par l’étude des modèles standard de Netlogo.
  • Analyse des réseaux sociaux ( Réseaux)
  • Data visualisation : de la grammaire des graphes à l’inventaire des solutions créatives en passant par l’ergonomie ou la psychologie.
  • Tests d’équivalence structurelle et comparaison inter-culturelle
  • ….

Les séances ont lieu les mardi de 18h00 à 20h30 à l’Ecole des Mines de Paris (Luxembourg) – Pour poursuivre voir aussi l’Atelier Doctoral.